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A‘“ AN IMPROVED FFT FOR A FOUR PARALLEL PIPE SIMD ARITHMETIC PROCESSOR
L
T INTRODUCT ION
-

s The effectiveness of sonar and radar is being improved by increased

= processing of the received signals. The fast Fourier transform (FFT) is a
basic building block for various signal processing enhancement algorithms.
The computational 1load imposed by signal bandwidths and number of oeams
requires parallel processors.

A militarized signal processor, the AN/UYS~2, that utilizes parallelism

ana aata flow constructs 1is being constructed to satisfy the need for

. increasea computational capability. Size constraints, power and reliability
ot requirements, etc., along with given internal data transfer rates, dictated
' a single-instruction, multiple-data (SIMD), four parallel pipe arithmetic
processor. Lonnector pin limitations on the boaras that are usea to package
the processor necessitated use of a common coefficient memory feeding the
S four parallel data pipes. This common coefficient memory also is the only
S cross-connection between the four pipes.

o The problem is to utilize the four parallel data pipes in the given

> _ architecture to perform the FFT. One method would transfer data in four
o independent sets and then perform four parallel FFT's in lock step.
SR However, this is not.compatible with the data flow architecture of the
) AN/UYS-2. Another method would perform one FFT on one data set four times

faster using the four parallel pipes simultaneously.

This report describes the second method, whereby an FFT computation on
a SIMUL four parallel pipe arithmetic processor can proceed approximately
four times faster than on a single pipe arithmetic processor with the same
K> instruction cycle rate. The basic concept uses four parallel data
processing pipes to compute one radix-4 FFT. Only one pipe would be
employed to perform tne last stage of the FFT. The first step in explaining
the concept is to derive a suitable version of the radix-4 FFT., iext,
_; formulas are derived to show the addition and multiplication time needed to
® compute an n-point FFT. Then, the FFT algorithm for using mixed ragixes is
given. {Tnis method works almost as well when computing radix-2 or mixed
- radix-¢ ang -4 FFT's.}) An efficient scheme for prescrambling the mixed
N radixes is also uerived. This method can be utilized to compute the inverse
discrete Fourier transform.
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AVAILABLE ARCHITECTURE

y The external architecture for the four parallel pipe arithmetic
. processor is shown in figure 1, and the internal architecture of a pipe is
Sy shown in figure 2. Each pipe has its own operand memory that can be
< simultaneously read and written to. A limitation of this architecture is
Y that the common coefficient memory is shared by all pipes, and crosscoupling
K between pipes is accomplished by one pipe writing into memory and another
pipe reading from that same memory.

3
NE AR

.- With the above parallel processing architecture in mind, the question
> is how to utilize the hardware to compute the FFT. The radix-4 FFT is shown
to be an efficient way to compute the FFT, irrespective of what hardware is
used, because four data points are multiplied by the vector (1, j, -1, -jl,
wh{cg reduces the number of complex multiples required by a factor of about
4.1,

CONCEPT AND DERIVATION

In partitioning the FFT into four pipes, i.e., placing one fourth of
the data points into each of the separate pipes, a decimation-in-time on the
incoming data set can be performed. One formulation of the radix-4
decimation-in-time FFT does not require cross-connection between the four

s data sets until the very last stage of the FFT. For this last stage, the
S independent results of the four separate pipes are transferred into the
N operand memory of only one pipe. This transferral operation is necessary
J because this stage of the FFT computation requires access to all points to
form the resulting frequency sample.

e

lr "
[ A
P

- DERIVATION OF A RADIX-4 FFT

oy The derivation of the radix-4 FFI is based on a decimation-in-time of
the input sequence, x(n), into smaller subsequences: Assume that the number
of input data points is a power of 4; i.e., N = 4v, and the object will be
to compute the discrete Fourier transform (DFT):

KK =D xS, dyme k=0, L e, K=l g =T (1)
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Figure 1.

Architecture of

the Four Parallel Pipe Arithmetic Processor
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Since N is a power of 4, separate the input sequence, x{(n), into four
N/4 data point subsequences as follows:

4r, 4r + 1, 4r + 2, 4r + 3,

where

P20, 1, ..., (N/4) -1,

Now write the DFT as

(N/8)-1 (N/4)-1
X(k) = Z x(4r)ugre + Z x(4r + Ly drrik

r=20 r=290

(ar+2)k ,\N3)-1

+ Z x(dr *+ 2)Wy Z x(4r + 3)wr(‘4'”*3)k’ 2)

r=20 r =90

(N/4)-1 (N/4)-1
X(k) = Z x(dr)asr s uk Z x(ar + 1)dy"¥
r=20 r=20
(N/4)-1 (N/4)-1
AN DT P ST )EMAS
r=y r=240
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- But
s
. =y
o E
2 Lar B
Jor N NT&) T
o because W' = e =€ = Winja)
- So
‘ (N/4)-1 ) (N/4)-1
» | X(k) = Z x(4r)w(N/4) A Z x(4r l)d(N/4)
.
- r=0 r=20
(N/4)-1 ; (N/4)-1 .
2K >k |
* Z x(4r+2)“(m4) z: Kl T 3
r=20 r=20

Although the index k ranges over N values, k = 0, 1,
of the sums, Gg(k), Gi(k), G2(k), and G3(k), need be
=0, 1, 2 ..., (N/4
N/4, where

G-(k) =
. 0 r=20
. (N/8)-1
o rk
S G,(k) = Z x(4r l)N(N/4)
e r=0
.
6
.
A e G L, e, ) R N e e e — N

N - 1, each
computed for k
) - 1 because each is per1od1c in k with a period of

(4)
rk
(N/4)" (5)

(7)
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: (N/4)-1 -
k
Gz(k) = Z Xx(4r Z)NZN/“»)’ (8) :ij
r=20 :1
and ;j
»)
(N/4)-1 ;i
+ rk
65(k) = Z x(4r + 3Wg gy - (9) §
r=20

Note that each of the sums in the above expressions is an N/4 data
point transform. Also, as k ranges over 0, 1, ... , N - 1, each of the sums
produce only N/4 different values of the N/4 point transforms.

Now rewrite equation (5) as

X(k) = Gy(k) * wﬁsl(k) + wﬁksz(k) * HaG(k), k=0, 1, ..oy N - L (10)

r‘: .'—'.4_.- .. e

But, as noted above, each Gi(k); i =0,1,2,3, is periodic in k of period
N - 1 values, partition k into four

N/4. Since k ranges from 0, 1, ... , .d
sequences, which are given by "y
-

m, m + (N/4), m + 2(N/4), m *+ 3(N/4); m =0, ..., (N/4) - 1. K

®

Substitute these m values for k in equation (10) to obtain the basic radix-4 X
kernal: a
L

2 3m,. ’

X(m) = Go(m) * WGy (m) + W "G,(m) + ax"Ga(m), m = 0, ..., (N/4) - 1 (11) .

i

7 "

(|

e T el

R . .t e . - . . P T S . - - -
- . et A - e e . T et A e . . ST + S T ~
.l LR V5 AR AT S S a ¥ WP AP T S, B U AL . FERAT I WL TR W S e W BTN W0 G AP Y I ST Sl G S0 TR W T W . U S LA L S e




M .-,"_.-_‘b he Sl " A P =) O 0]

TR 7303

[m+(N/4

2[m+(N/4
N N

Km *+ (N/4)] = Go(m) + W e m) + w 6, m)

. Wﬁ[m+(N/4)]G3(m), (12)

Km + 2(N/4)] = Gylm) + wkm 2N B g (n) « 2LM2NA) g ()

+ wﬁ[m*Z(N/‘l)]G:;(m), (13)

and

Km + 3(N4)] = Gy(m) + N%m+3(N/4)]Gl(m) . wﬁ[m+3(N/4)]GZ(m)

* wﬁ[m+3(N/4)]G3(m). (14)

Separating the k frequency terms into four sets, as shown above, and
factoring common powers of Wy reauces the number of multiplications in
equations {(11) through (14) from 12 to 3. This reduction is seen by noting
that

w£m+(N/4)] -l wé“’4) = (-7 (15)
2[m+(N/4 Lom 2(N/4 2 16

NN[‘“ ( )] = MN NN( )= (—I)NNm, (16)
3[m+(N/4)] am | 3(N/4) iy 3m

Wy =Wy Wy = (r3)Wy, (17)
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wgm+2(N/4)] - (-1)euT, (18)
wﬁ[m*Z(NM” - (1);w§m’ (19)
wﬁf"'*Z(N/‘”] - (1) '“ﬁm’ (20)
wﬁ"‘*”"’m - (+]) oD, (21)
N§[m+3(N/4)] - () ""Sm' (22)
and
wg[mz(um)]: G) "“ﬁm _ (23)

Now, where appropriate, substitue equations (15) through (23) into (11)
through (14) to simplify the basic radix-4 kernal in equations (24) through
(27):

X(m) = Go(m) + w: Gl(m) + NﬁmGz(m) * wime3(m) (24)
m=0, l, s o (N/4) -l’

2m 3m

Xim + (N4)] = Gyim) + (=3)WR6y (m) + (<1)WR"6,(m) + (+3)W3"65im),  (25)

Am * 2(N/4)] = G m) * (-1)w‘;"51(m) + (1)w§m62(m) + \—l)wgm%(m), (26)

| ORI . N
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and

XIm +3 (N/4)] = Golm) *+ (+3)Weq(m) + (=16, (m) + (=5)aEM6 (m).  (27)

The flowchart for the computation in equations (24) through (27) can be
drawn as shown in figure 3.

Gy(m) X(m)

G,(m) X{m + (N/4)]
G,(m) X[m + 2(N/4)]
G,(m) X[m + 3(N/4)]

Figure 3. Basic Radix-4 Kernal Computation of a Radix~4 FFT

Each of the Gj(m) are (N/4)-point transforms and since N = 4V, each
of the transforms can be broken down to four (N/4)-paint transforms to create
another stage in the computation. This staging can be continued until one of

the transforms contains only four points; for example, when m = 0 and N = 4
one obtains

10
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X(0) = 6~(0) + 496, (0) + w36,(0) *+ wlG4(0) (28)
0 471 472 4¥3 ?
.0 0, + 10
§ X(0 + 2) = 6.(0) - %, (0) + w26, (0) - w5, (0) (30)
. 0 4-1 472 473 ’
and
.,.0 0 .0
X(0 + 3) = GO(O) + JN4GI(0) ~ w4(52(0) - JW4G3(0). (31)
- But
‘
Go(0) = x(0), (32)
61(0) = x(1), (33)
i G2(0) = x(2), (34)
and
63(0) = x(3). (35)
Equations (28) through (31) can be condensed to
L X(k) = x(0)Wg + W x(1) + W5¥x(2) + W3x(3), k = 0,1,2,3. (36)
; Thus, equations (24) through (27) with m = O give tne same result as taking
-‘ a four-point DFT according to equation (1), as shown below:
- 11
(]
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3
KK) = D x(mWgE k= 0,1,2,3, (37)
n=0
X(0) = x(0) +x(1) + x(2) + x(3), (38)
X(1) = x(0) + wix(l) *+ W2x(2) * W3x(3), (39)
X(2) = x(0) *+ Adx(1) * agx(2) * Wax(3), (40)
and
X(3) = x(0) + Wik(1) *+ WOx(2) + Wax(3), (a1)
which reduce to
X(0) = x(0) + x(1) * x(2) * x(3), (42)
X(1) = x(0) - (J)x(1) - x(2) *+ jx(3), (43)
X(2) = x(0) - x(1) * x(2) - x(3), (44)
and
X(3) = x(0) * (J)x(1) - x(2) - jx(4). (45)

The result is an algorithm that repeatedly uses the basic computation
in figure 3 can be derived.

12
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The advantages of deriving equations (24) through (27) is that the
number of multiplications in the basic radix-4 kernal is reduced from 12 to
3 because Gj(m) = (a + jb) multiplied by a power of j reduces to

(a + jb)(j) = -b * ja (46)
and

(a *+ jb)(-§) = b - ja. (47)
Also

(a *+ jb)(-1) = -a - jb. (48)

Thus, by interchanging the real and imaginary components or by negating, one
is able to perform the required multiplication,

The radix-4 decimation-in-time FFT was derived, and a reduction in
multiplicatons by a factor of 4 was shown. Next will be shown how the
radix-4 FFT is computed on a four pipe arithmetic processor similar to the
one in figures 1 and 2.

ADAPTING RADIX-4 FFT T0 A
FOUR PIPE ARITHMETIC PRUOCESSOR

The object here is to divide the input sequence evenly among the four
pipes and let each pipe perform a radix-4 kernal computation on its input
data points independently of other points in other pipes. See figure 4 for
the flowchart for a 16-point radix-4 FFT, Since the four parallel
computations use the same coefficients and use the points in exactly the
same manner, the computation can be carried out using a SIMD architecture
with a common coefficient memory.

The important point is that in stage 1 of the FFT each radix-4 kernal
computation in a given pipe "calls" on the data points only w~ithin that
pipe, and no cross-connection between operand memories is required.

13
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Flowchart for a 16~Data-Point Radix-4 FFT

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x{7)

X(8)

x(9)

x(10)

x(11)

x(12)

x(13)

X(14)

x(15)




. - v - e a4 O A et o ar MERA I N orh gna S S i M et gt
p
9

TR 7363

However, stage 2 (the last stage in general) requires access to ail the
points of the intermediate results from the previous stage. The
architecture restriction on crosscoupling dictates that a single pipe must
be used for the last stage of the computation. The architecture allows
points- to be selectively read from the individual operand memories and
routed to a given pipe, say the first pipe in figure 1.

In the last stage of the FFT the appropriate field in the microword of
the microsequencer controlling the various data paths is set to read Gg(O)
from operand memory 1, Gj(0) from operand memory 2, G2(0) from operand
memory 3, and finally G3(0) from operand memory 4 to compute X(0).
Likewise the remaining intermediate results are selected from the individual
pipe operand memories and combined in pipe 1 to produce X(2), X(3),...,X(N -

In generai, if N = 4V, then v - 1 stages of the radix-4 FFT can be
computed in the four parallel pipes. The last stage, the VEN | woula then
be computed using only one pipe.

A measure of tne time required for an N point radix-4 FFT can be
arrived at as follows: Let N = 4V; thus, the FFT requires logg(N/
stages for the FFT computation. By looking at the bpasic radix-4 kernal,
given in equations (l1) through (14), and its flowchart in figure 3, it is
seen that 3 complex multiplies ana 12 complex adus are required per kernal.
Also, note that (N/4)—<xernals must be computed for each stage. If a unit of
time is requirea for one complex multiply, then the multiply time for an N =
4¥ point radix-4 FFT 1s given by

3 [1094(N) - 1)(N/4) log, (N) -1 (49)
3 + 3(N/4) = (3N/4) 1+ —_— ’
where
3 [log 4(N) - 1] N
7 (7)
is the time require to compute the first v - 1 stages in parallel and

3(N/4) is the multiplication time to compute the last stage. Similarly, the
time for computing the complex adds is given by

15
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1094 (N) -1 log, (N) -1
25 12(N/8)| ——— [ *+ 12(N/4) = 3N[1 * ——74-—] . (50)

o By judicial use of the architecture within a given pipe, as shown in
) figure 2, one is able to reduce the addition time by “pipelining in time"
the FFT computations and performing two parallel additions for each
multiplication.l (The phrase "pipelining-in-time" means that three sets
o of latches are interposed in the path through a given arithmetic processor
- (one of four parallel pipes) so that after three clock periods the pipe is
cL full, and addition and multiplication is overlapped.) In other words, the
time for computing a given FFT is proportional to the time for
multiplication, which is given by

R log, (N) -1
o Time = %ﬁ [1 + 41 :l, (51)

where one can see that as N becomes larger the multiplication time decreases

to approximately one fourth of that when using a single pipe. Thereby, one

. FFT can be computed approximately four times faster by using the four
o parallel pipes.

o &
""l:

A
L(l.!
s

Next, some practical. considerations in implementing this radix-4
algorithm on a four-parallel-pipe architecture are given; i.e., the size of
the FFT, size of the operand memory, mixed radix FFT's, speed formulas, bit
reversal required to re-order input data, and inverse FFT's are discussed.

1@

.
3
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- PRACTICAL CONSIDERATIONS

FFT SIZE

,,. The size of the FFT determines how efficiently the four parallel pipes
- can be used. Generally, the more data points there are to transform, the
less the effect of using only one pipe for the last stage nas on overall
computation time. The time required to transform several FFT sample sizes,
using both a single- and a paraliel-pipe FFT, are given in table 1, where it
e can be seen that the scheme approaches the theoretical reduction in speed of
| 1 a factor of 4.
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Table 1. Efficiency of a Four Parallel Pipe FFT
As a Function of Transform Size

Ratio Of
Size of FFT Time for Time for Single- to Parallel-
Single-pipe FFT Parallel-Pipe FFT Pipe Scheme
256 768 336 2.3
1,024 3,840 1,536 2.5
4,096 18,432 6,912 2.7
16,384 86,016 27,648 3.1

Another characteristic of FFT size is that it nwust be a power of 4.
Efficiency is increased by this restriction because the powers of AN are
located at the 90-deg quadrant points of the unit circle, and most :
multiplications reduce to multiplying by +1, +j, -1, or -j. However, this gk
parallel processing method can be adapted to work on data sizes that are a K
power of 2.

MIXED-RADIX FFT's AND SPEED FORMULAS

Acoustic signal processing generally uses time-bandwidth products where
512, 1024, 2048, or 4096 points are to be transformed. Since 512 ana 2048
are powers of 2 and not 4, a mixed-radix FFT can be employed to retain most
of the FFT efficiency by writing 512 as 2e 44 and 2048 as 2 e 15, For
the 512 sample FFT, one radix-2 stage and four radix-4 stages must be
performed to complete the computation. Similarly, for the 2048 computation,
one radix~2 stage and five radix-4 stages are required.

when performing the mixed radix FFT on the SIMD architecture in figure
1, the radix-2 stage can be performed first or last. A slignt increase in
speed can be achieved when the radix-2 kernals are used in the last stage.
The reason for this can be explained using a 32 = 2e 42 data point FFT as
an example.

The example FFT is performed by comouting a radix-4 first stage, a
radix-4 second stage, and finally a radix-2 third (last) stage (figure 5).
First, the 32 original data points are divided equally among the 4 pipes so
that each pipe has 8 points. Two radix-4 kernals are computed in each of

17 :
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Partial Flowchart for a 32-Data-Point FFT Using
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the four parallel pipes in the first stage. Now, the second stage radix-4
computations are performed, but for this stage points from pipes one and two
are crosscoupled. Because of the crosscoupling restriction, half of the
second stage computations must be performed in only one pipe, say pipe one.
Similarly, the points in pipes three and four must be combined into one
pipe, say pipe three. Therefore, only two of the possible four pipes can be
used in the second stage FFT computation.

The third stage computation presents the same probiem as the second
stage because data points from pipes 1 and 3 must be combined in only one
pipe, say pipe one. Re-ordering the staging as 4, 4, and 2 prevents the
four pipes from being used in parallel for the last two stages. Also, in
the last stage, the radix-2 FFT will require multiplication by 32/2 = 16
different powers of 43, However, the first stage multiplication
coefficients reduce to powers of J, which speeds up the computation time.

Alternatively, we can reorder the 32 data-point FFT stages, as shown in
figure 6, so the radix-2 stage is performed first, followed by two radix-4
stages. The first stage radix-2 kernal computations are performed in the
four parallel pipes, with each pipe computing four 2-point FFT's. The
second stage radix-4 kernal computations can again bDe performed in the four
parallel pipes because each computation requires only those points already
in its own operand memory. The result 1is that four 8-point FFT's are
performed in parallel in the second stage.

The third stage is the only computation that needs data points from the
other pipes. Therefore, the third stage radix-4 kernal computations must be
performed in only one pipe, say pipe one. This arrangement permits two
stages of the FFT to be done using the four parallel pipes, and only the
last stage must be done using one pipe. Also, the radix-2 coefficients
needed in the first stage are *+1 or -1, thereby eliminating multiplication
by powers of W32, In general, whenever radix-2 and -4 stages are
required, the radix-2 stage should be performed last.

Formulas for the number of multiplications involved for mixed radixes
are given next.

dnen N is equal to two times some power of four {(i.e., N = 2 e 4V),
the complex multiply time can be determined by allowing for 3(N/4)
multiplies for eacn radix-4 stage and N/2 multiplies for each radix-2
stage. If any stage is performed in four parallel pipes the time to compute
the complex multiplies snhould be divided by four. The only exception
applies to any radix-2 or -4 first stage. The first stage doesn't contain
any multiplies because the coefficients will be *1 for radix-2 and *1 or *j
for radix-4. - -
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A formula will now be derived for a mixed-radix FFT when radix-4 stages
are performed first and the radix-2 stage is performed last. In this case,
there are (V - 2) radix-4 stages with multiplying coefficients done in four
pipes, one radix-4 stage done in two pipes, and one radix-2 stage done in
one pipe. The total number of complex multiplies is determined by
multiplying the number of stages by the number of parallel multiplies per
stage. Thus, the

NOM (number of complex multiplies) = %[(V - 2)'3—'1}+ I_g‘)ltf +g , (52)
which reduces to

NOM = X (3v + 8) (53;

= To . )

Similarly, when the radix-2 stage is performed first, there are (V - 1)
radix-4 stages done in four parallel pipes, one radix-4 stage done in a
single pipe, and a radix-2 stage done in four pipes, which has no
multiplying coefficients other than *1. The total number of serial compiex
multiplies, considering the parallelism of the four pipes, is

1 3N o
NCM:Z EV-I)T]+T, (54)
which reduces to

NCH %(3v+9). ‘ (55)

The difference between the NCM for the two formulas, above, is N/l6.
This difference is not a significant percentage of the number of complex
multiplies. The stage order is really driven by the complexity involved in
shuffling data between pipes since the first case requires shuffling for two
stages.

21
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OPERAND MEMORY

Another advantage of the radix-4 parallel pipe arrangement when
computing the FFT is that three of the operand memories need hold only one
quarter of the total sample size. However, the operand mémory, which serves
to combine the four individual results in the last stage, must be large
enough to hold all N points. The computation scheme described is
essentially an in-place scheme. Four temporary locations must be allocated
for the four values, Gg(m), Gi(m), Gp(m), and G3(m), and their
values must be saved each time m is varied from O to (N/4) - 1 in each stage.

BIT REVERSAL TO RE-ORDER INPUT DATA

This section discusses why and how the input data sequence should be
re-ordered before proceeding with the FFT computations. By re-ordering the
input sequence,

. the FFT computations require less temporary storage,
the resulting output sequence is in its natural order, and
the address generation required to index to the proper data points
and coefficients is simplified.

The discussion on re-ordering begins with the simple radix-2, then the

radix-4, and finally the mixed radix, radix-Z2 and -4.

In the derivation of the radix-2 decimation-in-time algoritam,2 the
original input sequence is first sorted into even and then odd numbered data
points. Next, the even numbered points are sorted into an even and an odd
group. Similarly, the odd points from the first sort are also sorted into
an even and an odd group. The sorting process, breaking each group into new
even and odd groups, continues in each stage until there are only two points
left in each group, and they are already sorted into even and odd because
there are only two points in a set.

An example of this process is shown in table 2, where the original
binary ordering, the ordering after the first sort, and the ordering after
the second sort are listed. A third sort is not necessary.

22
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Table 2. Successive Sorts of Input Data Points for a Ragix-2 FFT

Uriginal Binary Ordering First Sort Secona Sort
J2d1dg d1dod2 JoJd1d2

000 000 000} Even
001 010 100
010 100} Even 010} Odd
011 110 110
100 001 001}
101 011 1014 Even
110 101} Odd 011}
111 111 111f Oad

After the first sort all the even data points are in the first half of
in the second half of the

The same result is obtained by considering the least significant
in the original binary ordering to be the most significant bit,
to be the

the sorted sequence,

sequence.
bit, Jg,
and the
ones,

i.

most
e.,

The

significant two bits,
(Jgd2d1) 2.

second

J2Jd1,
sort

and the odd points are

in

table

least

2 separates

significant

the

even points from the first sort into even and odd points, ang the odd points
from the first sort are also separated into even and odd points.
tnat the same result is obtained by making the most significant oit, Jj,

of the
J1do.

As

J2d1  bit

pair

the most
there are only two points

significant bit

to

obtain

the

Observe

pair

in the resulting subsequence and

they are already in even and then odd order.

A third sort is not necessary.

After sorting, the location of an original data point can be determined

by performing the well «known bit reversal procedure for radix-2 FFT's. That
ts, if (Jdadjdy)z is the binary representation of an original point,
that point ends wup in location (Jgdydp)2 following the sorting in

the various stages required to compute the FFT.

The above process is generalized for radix-4 by scrting the original N-

point sequence into four subsequences composed of the data points 4r, 4r *+ 1,
each of the four

4r + 2,
resulting

and 4r + 3,

r = 0,

subsequences

(N/16) - 1.

is

1,

(N/4)

independently
subsequence 4r is sorted into 4q, 4q * 1, 4g +* 2, and 4q *+ 3, q = 0, 1,

1. Then,

sorted

the

same

way;

i.e.,

. ey

The sorting process continues for loggq (N) stages. The original data
can Dbe re-ordered by bit reversing the base four 3igits or by pair-wise
reversing the pinary dit representations of tne sample ingex. For example,
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if  (J3dpdydy)z is the binary representation of the original
sequence, the sorted sequence will be ordered as (Jy1Jgd3d2)2.

If the original set of agata points contains N = 43 points, then three
sorts are required, although the last sort need not be performed as there
would be only 4 points in the resulting 16 subsequences to sort, and they
are already automatically sorted. If the binary representation of the
original  sequence were  (Jg5J4d3J2J1Jd0)2, the points would end
up in the location represented by (J1JgJd3Jdadsdg)z from  which
the radix-4 FFT would be performed.

For the mixed-radix FFT, the sorted ordering of the data can be
obtained by reversing either bits or pairs of bits. As an example, suppose
32 = 2.42 data points are to be transformed by performing a
decimation-in-time FFT having a radix-2 stage first, followed by two radix-4
stages. Note that in the derivation of a radix-2/-4/-4 FFT, a radix-4 stage
would be aerived followed by another radix-4 stage and then a radix-2
stage. However, the radix-Z stage would be computed first, followed by the
two radix-4 stages. Let (J4J3J2J1J0)% be the binary
representation of the original data sequence. he 1input data would be
sorted by 4's, then by 4's again, and finally by 2's into even and odd
points. The reversal procedure would be (JpJ1Jgdgd3), then (Jg
J24d1d443) 2, where the  entities Jgdz and  JzJ;  are  treated
as pairs that remain in fixed positions relative to each other.

The above re-ordering is necessary prior to any computation so that the
FFT can be carried out "in place." If the flow diagram is drawn for each
stage of tne FFT, the data points on the same norizontal level transform
into points on that same horizontal level. No temporary memory need be
allocated except for two locations in the radix-2 kernal and four in the-
radix -4 kernal.

The net effect of performing the radix-2 kernal (butterfly) or radix-4
kernal (dragonfly) on re-ordered data is that the resulting frequency data
points of the FFT end up in their correct order and the intermediate memory
locations can be overwritten during each stage of the FFT computation.

The digit-reversal procedure can take place in hardware simply by
building a binary counter that counts from the left (most significant bit)
or by transposing the wires from a normal counter, as shown in figure 7.
This counter is used to index into the original data set to obtain the
properly re-ordered data points.

The digit reversal counter can be generalized to any radix (not
necessarily powers of 2) by using an adder circuit that causes a register to
step tnrough a bit reversed sequence of any radix, as shown in trigure 8.
here the adder is dinary, but the adder increments are chosen to simulate a

4
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Figure 7. Digit Reversal for a Radix 2/-4/-4 FFT
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Figure 8. Generalized Bit Reversal Hardware
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counter of any mixed radix desired, like 3, 5, 4, where the number of data
points is factorable as N = (3)(5)(4).

Sample sizes that are not powers of 2 are generally not necessary3
and create awkward hardware.

INVERSE OFT's

The exact same parallel processing FFT algorithm and haraware discussed
here can be used to compute the inverse DFT, which is given by

%“Jiik

1 M=l
x(k) = § _}:0 X(i)e
1=

The inverse DOFT <can be obtained wusing the forward transform
coefficients and by

A
conjugating X(i) to obtain X(i),
performing the forward transform to obtain

N=l .
k) = L T(ile 2%1 ik,
i=0

A
3. dividing x(k) by N and conjugating the result to obtain

—
x(k) = 24k (58)

In other words, to obtain the inverse DFT simply conjugate tne input data
points, take forward transform, divide by N, and conjugate the result.
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CONCLUSION

A method was devised to efficiently utilize a loosely interconnected,
SIMU four parallel pipe arithmetic processor with a single common
coefficient memory to compute the FFT. Previously users of this
architecture employed the four pipes to execute four independent FFT's on
four independent data sets, thereby limiting its use.

The method described here uses the four parallel pipes to compute a
single FFT approximately four times faster than that possible in a single
pipe arithmetic processor. A decimation-in-time radix-4 FFT algorithm thet
is adapted to allow the computation to proceed on the four parallel pipes is
derived. Basically the original N-point data set is separated into four N/4
point data sets, and each of these points is partially transformed in each
of the four pipes. The four pipes operate in parallel until the last stage,
at which time one pipe must be used to finish the computation.

Formulas showing the addition and multiplication time needed to compute
an N-point radix-4 FFT are derived and described here. A comparison of
computing an FFT in a single pipe versus four parallel pipes is made to show
that a fourfold decrease in execution time is possible with the four
parallel pipes. Also, a method is shown for computing an FFT whose length
is not a power of 4. An example of mixing radix-2 and 4 stages shows that
the radix-2 stage can be performed first or last. Formulas for the
execution time of the mixed radix FFT computation are given.

It is advantageous to re-order the input data in the described FFT
scheme because "in-place-computations" can save memory and also the output
appears in the correct order. In -addition, for an N-point transform, three
operana memories need be N/4 words, and one operand memory must pe N words
in size.

A generaiized method for re-ordering the data is presertec thet &llois
data to be prescrambled for radix-2, -4, or mixed-radi.es. T! s re-ordering
iethcd uses an arrangement of a binary courter that counts frcm the most
significanrt rather than from the least cignificant bit. The ciutput f ti-s
counter can be used to index naturaily crdered input data pointc ancd ‘ocate
the appropriate scranbied data points for the radix-2 (butterfly! or the
radin-4 (dragunfly) FFT computaticns.

Finally a method is shown that allows the same computations to produce
the inverse UFT. The computation method described here can be generalized
to any radix FFT and to any number of parallel processing data pipes in an
arithmetic processor.
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